* 내가 읽으려고 내 맘대로 번역한 글.

* 원문 : https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html

 

 

The Basics

Swift is a new programming language for iOS, macOS, watchOS, and tvOS app development. Nonetheless, many parts of Swift will be familiar from your experience of developing in C and Objective-C.

swift는 iOS, macOS, watchOS, tvOS 앱 개발을 위한 새로운 프로그래밍 언어다. 그런데도 c 와 objective-c 의 개발경험이 있으면 swift 는 익숙하게 느껴질것이다.

 

Swift provides its own versions of all fundamental C and Objective-C types, including Int for integers, Double and Float for floating-point values, Bool for Boolean values, and Stringfor textual data. Swift also provides powerful versions of the three primary collection types, Array, Set, and Dictionary, as described in Collection Types.

swift는 c와 objective-c 의 기본적인 데이타타입과 같은것을 자체적으로 가지고 있다.
정수형은 Int, 부동소수점은 Float, 참/거짓은 Bool, 문자열은 String.
게다가 swift는 강력한 3가지의 기본 콜렉션타입도 제공한다 (Array, Set, Dictionary)

 

Like C, Swift uses variables to store and refer to values by an identifying name. Swift also makes extensive use of variables whose values can’t be changed. These are known as constants, and are much more powerful than constants in C. Constants are used throughout Swift to make code safer and clearer in intent when you work with values that don’t need to change.

c처럼 swift도 변수들에 값을 저장하고, 변수들끼리는 이름으로 구분한다.
상수라고 알려진 값이 변하지 않는 변수들을 많이 사용하는데 c 에서 보다 더 강력하다.
값이 변하지 않는 상수는 swift 전반에 걸쳐서 코드를 더 안전하고 깨끗하게 만들어준다.

 

In addition to familiar types, Swift introduces advanced types not found in Objective-C, such as tuples. Tuples enable you to create and pass around groupings of values. You can use a tuple to return multiple values from a function as a single compound value.

친숙한 데이타타입 외에도, swift는 objective-c에는 없는 tuples라는 진보된 타입도 있다.
tuples은 여러값을 묶어서 하나로 만들고 이를 다른곳에 전달할수 있다.
함수에서는 하나의 값만 리턴할수 있는데, tuples을 사용하면 여러값을 리턴하는 효과를 낼수 있다.

 

Swift also introduces optional types, which handle the absence of a value. Optionals say either “there is a value, and it equals x” or “there isn’t a value at all”. Using optionals is similar to using nil with pointers in Objective-C, but they work for any type, not just classes. Not only are optionals safer and more expressive than nil pointers in Objective-C, they’re at the heart of many of Swift’s most powerful features.

swift는 또 optional타입도 있는데, 이는 값이없음을 다룰수 있다.
optional타입은 값을 저장하고 비교할수 있고, 값이없을 수도 있다.
optional타입을 objective-c에서 nil값을 가지는 포인터와 비슷하게 사용할수 있는데
objective-c에서는 클래스만 nil값을 가질수 있지만 optional타입은 모든 데이타타입에 사용가능하다.
optional타입은 objective-c의 nil 포인터보다 더 안전하고 유용하기만 한게 아니라
swift의 여러 강력한 기능들의 핵심이다.

 

Swift is a type-safe language, which means the language helps you to be clear about the types of values your code can work with. If part of your code requires a String, type safety prevents you from passing it an Int by mistake. Likewise, type safety prevents you from accidentally passing an optional String to a piece of code that requires a non-optional String. Type safety helps you catch and fix errors as early as possible in the development process.

swift는 타입에 안전한 언어라서 데이타타입의 값을 다룰때 도움을 준다.
문자열이 요구되는 곳에서는 Int를 넣지 못하게 막아준다.
마찬가지로 non-optional문자열이 요구되는 곳에는 optional문자열을 넣지 못하게 막아준다.
개발할때 가능한 빨리 이런 에러들을 발견하고 고칠수 있게 도와준다.

 

Constants and Variables

Constants and variables associate a name (such as maximumNumberOfLoginAttempts or welcomeMessage) with a value of a particular type (such as the number 10 or the string "Hello"). The value of a constant can’t be changed once it’s set, whereas a variable can be set to a different value in the future.

상수와 변수는 특정 타입의 값과 이름으로 연결되어 있다.
상수의 값은 한번 설정되후 바꿀수 없고, 변수는 계속 다른 값으로 설정할수 있다.

Declaring Constants and Variables

Constants and variables must be declared before they’re used. You declare constants with the let keyword and variables with the var keyword. Here’s an example of how constants and variables can be used to track the number of login attempts a user has made:

상수와 변수는 사용하기 전에 꼭 선언해야 한다.
상수는 let. 변수는 var 로 선언한다.

  1. let maximumNumberOfLoginAttempts = 10
  2. var currentLoginAttempt = 0

This code can be read as:

“Declare a new constant called maximumNumberOfLoginAttempts, and give it a value of 10. Then, declare a new variable called currentLoginAttempt, and give it an initial value of 0.”

In this example, the maximum number of allowed login attempts is declared as a constant, because the maximum value never changes. The current login attempt counter is declared as a variable, because this value must be incremented after each failed login attempt.

You can declare multiple constants or multiple variables on a single line, separated by commas:

  1. var x = 0.0, y = 0.0, z = 0.0

NOTE

If a stored value in your code won’t change, always declare it as a constant with the let keyword. Use variables only for storing values that need to be able to change.

Type Annotations

You can provide a type annotation when you declare a constant or variable, to be clear about the kind of values the constant or variable can store. Write a type annotation by placing a colon after the constant or variable name, followed by a space, followed by the name of the type to use.

This example provides a type annotation for a variable called welcomeMessage, to indicate that the variable can store String values:

  1. var welcomeMessage: String

The colon in the declaration means “…of type…,” so the code above can be read as:

“Declare a variable called welcomeMessage that is of type String.”

The phrase “of type String” means “can store any String value.” Think of it as meaning “the type of thing” (or “the kind of thing”) that can be stored.

The welcomeMessage variable can now be set to any string value without error:

  1. welcomeMessage = "Hello"

You can define multiple related variables of the same type on a single line, separated by commas, with a single type annotation after the final variable name:

  1. var red, green, blue: Double

NOTE

It’s rare that you need to write type annotations in practice. If you provide an initial value for a constant or variable at the point that it’s defined, Swift can almost always infer the type to be used for that constant or variable, as described in Type Safety and Type Inference. In the welcomeMessage example above, no initial value is provided, and so the type of the welcomeMessage variable is specified with a type annotation rather than being inferred from an initial value.

Naming Constants and Variables

Constant and variable names can contain almost any character, including Unicode characters:

  1. let π = 3.14159
  2. let 你好 = "你好世界"
  3. let 🐶🐮 = "dogcow"

Constant and variable names can’t contain whitespace characters, mathematical symbols, arrows, private-use Unicode scalar values, or line- and box-drawing characters. Nor can they begin with a number, although numbers may be included elsewhere within the name.

Once you’ve declared a constant or variable of a certain type, you can’t declare it again with the same name, or change it to store values of a different type. Nor can you change a constant into a variable or a variable into a constant.

NOTE

If you need to give a constant or variable the same name as a reserved Swift keyword, surround the keyword with backticks (`) when using it as a name. However, avoid using keywords as names unless you have absolutely no choice.

You can change the value of an existing variable to another value of a compatible type. In this example, the value of friendlyWelcome is changed from "Hello!" to "Bonjour!":

  1. var friendlyWelcome = "Hello!"
  2. friendlyWelcome = "Bonjour!"
  3. // friendlyWelcome is now "Bonjour!"

Unlike a variable, the value of a constant can’t be changed after it’s set. Attempting to do so is reported as an error when your code is compiled:

  1. let languageName = "Swift"
  2. languageName = "Swift++"
  3. // This is a compile-time error: languageName cannot be changed.

Printing Constants and Variables

You can print the current value of a constant or variable with the print(_:separator:terminator:) function:

  1. print(friendlyWelcome)
  2. // Prints "Bonjour!"

The print(_:separator:terminator:) function is a global function that prints one or more values to an appropriate output. In Xcode, for example, the print(_:separator:terminator:) function prints its output in Xcode’s “console” pane. The separator and terminator parameter have default values, so you can omit them when you call this function. By default, the function terminates the line it prints by adding a line break. To print a value without a line break after it, pass an empty string as the terminator—for example, print(someValue, terminator: ""). For information about parameters with default values, see Default Parameter Values.

Swift uses string interpolation to include the name of a constant or variable as a placeholder in a longer string, and to prompt Swift to replace it with the current value of that constant or variable. Wrap the name in parentheses and escape it with a backslash before the opening parenthesis:

  1. print("The current value of friendlyWelcome is \(friendlyWelcome)")
  2. // Prints "The current value of friendlyWelcome is Bonjour!"

NOTE

All options you can use with string interpolation are described in String Interpolation.

Comments

Use comments to include nonexecutable text in your code, as a note or reminder to yourself. Comments are ignored by the Swift compiler when your code is compiled.

Comments in Swift are very similar to comments in C. Single-line comments begin with two forward-slashes (//):

  1. // This is a comment.

Multiline comments start with a forward-slash followed by an asterisk (/*) and end with an asterisk followed by a forward-slash (*/):

  1. /* This is also a comment
  2. but is written over multiple lines. */

Unlike multiline comments in C, multiline comments in Swift can be nested inside other multiline comments. You write nested comments by starting a multiline comment block and then starting a second multiline comment within the first block. The second block is then closed, followed by the first block:

  1. /* This is the start of the first multiline comment.
  2. /* This is the second, nested multiline comment. */
  3. This is the end of the first multiline comment. */

Nested multiline comments enable you to comment out large blocks of code quickly and easily, even if the code already contains multiline comments.

Semicolons

Unlike many other languages, Swift doesn’t require you to write a semicolon (;) after each statement in your code, although you can do so if you wish. However, semicolons arerequired if you want to write multiple separate statements on a single line:

  1. let cat = "🐱"; print(cat)
  2. // Prints "🐱"

Integers

Integers are whole numbers with no fractional component, such as 42 and -23. Integers are either signed (positive, zero, or negative) or unsigned (positive or zero).

Swift provides signed and unsigned integers in 8, 16, 32, and 64 bit forms. These integers follow a naming convention similar to C, in that an 8-bit unsigned integer is of type UInt8, and a 32-bit signed integer is of type Int32. Like all types in Swift, these integer types have capitalized names.

Integer Bounds

You can access the minimum and maximum values of each integer type with its min and maxproperties:

  1. let minValue = UInt8.min // minValue is equal to 0, and is of type UInt8
  2. let maxValue = UInt8.max // maxValue is equal to 255, and is of type UInt8

The values of these properties are of the appropriate-sized number type (such as UInt8 in the example above) and can therefore be used in expressions alongside other values of the same type.

Int

In most cases, you don’t need to pick a specific size of integer to use in your code. Swift provides an additional integer type, Int, which has the same size as the current platform’s native word size:

  • On a 32-bit platform, Int is the same size as Int32.
  • On a 64-bit platform, Int is the same size as Int64.

Unless you need to work with a specific size of integer, always use Int for integer values in your code. This aids code consistency and interoperability. Even on 32-bit platforms, Intcan store any value between -2,147,483,648 and 2,147,483,647, and is large enough for many integer ranges.

UInt

Swift also provides an unsigned integer type, UInt, which has the same size as the current platform’s native word size:

  • On a 32-bit platform, UInt is the same size as UInt32.
  • On a 64-bit platform, UInt is the same size as UInt64.

NOTE

Use UInt only when you specifically need an unsigned integer type with the same size as the platform’s native word size. If this isn’t the case, Int is preferred, even when the values to be stored are known to be nonnegative. A consistent use of Int for integer values aids code interoperability, avoids the need to convert between different number types, and matches integer type inference, as described in Type Safety and Type Inference.

Floating-Point Numbers

Floating-point numbers are numbers with a fractional component, such as 3.14159, 0.1, and -273.15.

Floating-point types can represent a much wider range of values than integer types, and can store numbers that are much larger or smaller than can be stored in an Int. Swift provides two signed floating-point number types:

  • Double represents a 64-bit floating-point number.
  • Float represents a 32-bit floating-point number.

NOTE

Double has a precision of at least 15 decimal digits, whereas the precision of Float can be as little as 6 decimal digits. The appropriate floating-point type to use depends on the nature and range of values you need to work with in your code. In situations where either type would be appropriate, Double is preferred.

Type Safety and Type Inference

Swift is a type-safe language. A type safe language encourages you to be clear about the types of values your code can work with. If part of your code requires a String, you can’t pass it an Int by mistake.

Because Swift is type safe, it performs type checks when compiling your code and flags any mismatched types as errors. This enables you to catch and fix errors as early as possible in the development process.

Type-checking helps you avoid errors when you’re working with different types of values. However, this doesn’t mean that you have to specify the type of every constant and variable that you declare. If you don’t specify the type of value you need, Swift uses type inference to work out the appropriate type. Type inference enables a compiler to deduce the type of a particular expression automatically when it compiles your code, simply by examining the values you provide.

Because of type inference, Swift requires far fewer type declarations than languages such as C or Objective-C. Constants and variables are still explicitly typed, but much of the work of specifying their type is done for you.

Type inference is particularly useful when you declare a constant or variable with an initial value. This is often done by assigning a literal value (or literal) to the constant or variable at the point that you declare it. (A literal value is a value that appears directly in your source code, such as 42 and 3.14159 in the examples below.)

For example, if you assign a literal value of 42 to a new constant without saying what type it is, Swift infers that you want the constant to be an Int, because you have initialized it with a number that looks like an integer:

  1. let meaningOfLife = 42
  2. // meaningOfLife is inferred to be of type Int

Likewise, if you don’t specify a type for a floating-point literal, Swift infers that you want to create a Double:

  1. let pi = 3.14159
  2. // pi is inferred to be of type Double

Swift always chooses Double (rather than Float) when inferring the type of floating-point numbers.

If you combine integer and floating-point literals in an expression, a type of Double will be inferred from the context:

  1. let anotherPi = 3 + 0.14159
  2. // anotherPi is also inferred to be of type Double

The literal value of 3 has no explicit type in and of itself, and so an appropriate output type of Double is inferred from the presence of a floating-point literal as part of the addition.

Numeric Literals

Integer literals can be written as:

  • A decimal number, with no prefix
  • A binary number, with a 0b prefix
  • An octal number, with a 0o prefix
  • A hexadecimal number, with a 0x prefix

All of these integer literals have a decimal value of 17:

  1. let decimalInteger = 17
  2. let binaryInteger = 0b10001 // 17 in binary notation
  3. let octalInteger = 0o21 // 17 in octal notation
  4. let hexadecimalInteger = 0x11 // 17 in hexadecimal notation

Floating-point literals can be decimal (with no prefix), or hexadecimal (with a 0x prefix). They must always have a number (or hexadecimal number) on both sides of the decimal point. Decimal floats can also have an optional exponent, indicated by an uppercase or lowercase e; hexadecimal floats must have an exponent, indicated by an uppercase or lowercase p.

For decimal numbers with an exponent of exp, the base number is multiplied by 10exp:

  • 1.25e2 means 1.25 x 102, or 125.0.
  • 1.25e-2 means 1.25 x 10-2, or 0.0125.

For hexadecimal numbers with an exponent of exp, the base number is multiplied by 2exp:

  • 0xFp2 means 15 x 22, or 60.0.
  • 0xFp-2 means 15 x 2-2, or 3.75.

All of these floating-point literals have a decimal value of 12.1875:

  1. let decimalDouble = 12.1875
  2. let exponentDouble = 1.21875e1
  3. let hexadecimalDouble = 0xC.3p0

Numeric literals can contain extra formatting to make them easier to read. Both integers and floats can be padded with extra zeros and can contain underscores to help with readability. Neither type of formatting affects the underlying value of the literal:

  1. let paddedDouble = 000123.456
  2. let oneMillion = 1_000_000
  3. let justOverOneMillion = 1_000_000.000_000_1

Numeric Type Conversion

Use the Int type for all general-purpose integer constants and variables in your code, even if they’re known to be nonnegative. Using the default integer type in everyday situations means that integer constants and variables are immediately interoperable in your code and will match the inferred type for integer literal values.

Use other integer types only when they’re specifically needed for the task at hand, because of explicitly sized data from an external source, or for performance, memory usage, or other necessary optimization. Using explicitly sized types in these situations helps to catch any accidental value overflows and implicitly documents the nature of the data being used.

Integer Conversion

The range of numbers that can be stored in an integer constant or variable is different for each numeric type. An Int8 constant or variable can store numbers between -128 and 127, whereas a UInt8 constant or variable can store numbers between 0 and 255. A number that won’t fit into a constant or variable of a sized integer type is reported as an error when your code is compiled:

  1. let cannotBeNegative: UInt8 = -1
  2. // UInt8 cannot store negative numbers, and so this will report an error
  3. let tooBig: Int8 = Int8.max + 1
  4. // Int8 cannot store a number larger than its maximum value,
  5. // and so this will also report an error

Because each numeric type can store a different range of values, you must opt in to numeric type conversion on a case-by-case basis. This opt-in approach prevents hidden conversion errors and helps make type conversion intentions explicit in your code.

To convert one specific number type to another, you initialize a new number of the desired type with the existing value. In the example below, the constant twoThousand is of type UInt16, whereas the constant one is of type UInt8. They can’t be added together directly, because they’re not of the same type. Instead, this example calls UInt16(one) to create a new UInt16 initialized with the value of one, and uses this value in place of the original:

  1. let twoThousand: UInt16 = 2_000
  2. let one: UInt8 = 1
  3. let twoThousandAndOne = twoThousand + UInt16(one)

Because both sides of the addition are now of type UInt16, the addition is allowed. The output constant (twoThousandAndOne) is inferred to be of type UInt16, because it’s the sum of two UInt16 values.

SomeType(ofInitialValue) is the default way to call the initializer of a Swift type and pass in an initial value. Behind the scenes, UInt16 has an initializer that accepts a UInt8 value, and so this initializer is used to make a new UInt16 from an existing UInt8. You can’t pass in any type here, however—it has to be a type for which UInt16 provides an initializer. Extending existing types to provide initializers that accept new types (including your own type definitions) is covered in Extensions.

Integer and Floating-Point Conversion

Conversions between integer and floating-point numeric types must be made explicit:

  1. let three = 3
  2. let pointOneFourOneFiveNine = 0.14159
  3. let pi = Double(three) + pointOneFourOneFiveNine
  4. // pi equals 3.14159, and is inferred to be of type Double

Here, the value of the constant three is used to create a new value of type Double, so that both sides of the addition are of the same type. Without this conversion in place, the addition would not be allowed.

Floating-point to integer conversion must also be made explicit. An integer type can be initialized with a Double or Float value:

  1. let integerPi = Int(pi)
  2. // integerPi equals 3, and is inferred to be of type Int

Floating-point values are always truncated when used to initialize a new integer value in this way. This means that 4.75 becomes 4, and -3.9 becomes -3.

NOTE

The rules for combining numeric constants and variables are different from the rules for numeric literals. The literal value 3 can be added directly to the literal value 0.14159, because number literals don’t have an explicit type in and of themselves. Their type is inferred only at the point that they’re evaluated by the compiler.

Type Aliases

Type aliases define an alternative name for an existing type. You define type aliases with the typealias keyword.

Type aliases are useful when you want to refer to an existing type by a name that is contextually more appropriate, such as when working with data of a specific size from an external source:

  1. typealias AudioSample = UInt16

Once you define a type alias, you can use the alias anywhere you might use the original name:

  1. var maxAmplitudeFound = AudioSample.min
  2. // maxAmplitudeFound is now 0

Here, AudioSample is defined as an alias for UInt16. Because it’s an alias, the call to AudioSample.min actually calls UInt16.min, which provides an initial value of 0 for the maxAmplitudeFound variable.

Booleans

Swift has a basic Boolean type, called Bool. Boolean values are referred to as logical, because they can only ever be true or false. Swift provides two Boolean constant values, true and false:

  1. let orangesAreOrange = true
  2. let turnipsAreDelicious = false

The types of orangesAreOrange and turnipsAreDelicious have been inferred as Boolfrom the fact that they were initialized with Boolean literal values. As with Int and Doubleabove, you don’t need to declare constants or variables as Bool if you set them to true or false as soon as you create them. Type inference helps make Swift code more concise and readable when it initializes constants or variables with other values whose type is already known.

Boolean values are particularly useful when you work with conditional statements such as the if statement:

  1. if turnipsAreDelicious {
  2. print("Mmm, tasty turnips!")
  3. } else {
  4. print("Eww, turnips are horrible.")
  5. }
  6. // Prints "Eww, turnips are horrible."

Conditional statements such as the if statement are covered in more detail in Control Flow.

Swift’s type safety prevents non-Boolean values from being substituted for Bool. The following example reports a compile-time error:

  1. let i = 1
  2. if i {
  3. // this example will not compile, and will report an error
  4. }

However, the alternative example below is valid:

  1. let i = 1
  2. if i == 1 {
  3. // this example will compile successfully
  4. }

The result of the i == 1 comparison is of type Bool, and so this second example passes the type-check. Comparisons like i == 1 are discussed in Basic Operators.

As with other examples of type safety in Swift, this approach avoids accidental errors and ensures that the intention of a particular section of code is always clear.

Tuples

Tuples group multiple values into a single compound value. The values within a tuple can be of any type and don’t have to be of the same type as each other.

tuple은 여러개의 값을 하나로 묶어준다. tunple안의 값은 어떤 타입이든 될수 있고, 각각 다른 타입이어도 된다.

 

In this example, (404, "Not Found") is a tuple that describes an HTTP status code. An HTTP status code is a special value returned by a web server whenever you request a web page. A status code of 404 Not Found is returned if you request a webpage that doesn’t exist.

이 예제에서, (404, "Not Found") 는 HTTP상태코드를 나타내는 tuple이다.

HTTP상태코드는 너가 웹페이지를 요청할때마다 웹서버가 리턴해주는 특별한 값이다.

404 Not Found는 너가 웹서버에 없는 페이지를 요청할때 리턴된다.

let http404Error = (404, "Not Found")
// http404Error is of type (Int, String), and equals (404, "Not Found")

The (404, "Not Found") tuple groups together an Int and a String to give the HTTP status code two separate values: a number and a human-readable description. It can be described as “a tuple of type (Int, String)”.

You can create tuples from any permutation of types, and they can contain as many different types as you like. There’s nothing stopping you from having a tuple of type (Int, Int, Int), or (String, Bool), or indeed any other permutation you require.

You can decompose a tuple’s contents into separate constants or variables, which you then access as usual:

(404, "Not Found") tuple은 HTTP상태코드 나타내는 2개의 값 (숫자와 사람이 읽을수 있는 설명)을 하나로 묶었다.

tuple을 만들때는 어떤 타입도 가능하고, 서로 다른 타입을 포함하는것도 가능하다.

(Int, Int, Int) (String, Bool) 등등 다 가능하다.

tuple의 내용을 각각 상수 또는 변수로 분리해서 일반적인 방법으로 사용할수 있다.

let (statusCode, statusMessage) = http404Error
print("The status code is \(statusCode)")
// Prints "The status code is 404"
print("The status message is \(statusMessage)")
// Prints "The status message is Not Found"

 

If you only need some of the tuple’s values, ignore parts of the tuple with an underscore (_) when you decompose the tuple:

만약 tuple에서 한부분만 필요하다면, 무시하려면 부분의 자리에 underscore (_)를 넣어라.

let (justTheStatusCode, _) = http404Error
print("The status code is \(justTheStatusCode)")
// Prints "The status code is 404"

 

Alternatively, access the individual element values in a tuple using index numbers starting at zero:

tuple의 요소들을 개별적으로 접근하려면, 0부터 시작하는 index 번호를 사용해라.

print("The status code is \(http404Error.0)")
// Prints "The status code is 404"
print("The status message is \(http404Error.1)")
// Prints "The status message is Not Found"

 

You can name the individual elements in a tuple when the tuple is defined:

tuple을 만들때 개별요소에 이름을 줄수 도 있다.

let http200Status = (statusCode: 200, description: "OK")

 

If you name the elements in a tuple, you can use the element names to access the values of those elements:

tuple요소에 이름을 주면, 각 요소에 접근할때 이름을 이용할수 있다.

print("The status code is \(http200Status.statusCode)")
// Prints "The status code is 200"
print("The status message is \(http200Status.description)")
// Prints "The status message is OK"

 

Tuples are particularly useful as the return values of functions. A function that tries to retrieve a web page might return the (Int, String) tuple type to describe the success or failure of the page retrieval. By returning a tuple with two distinct values, each of a different type, the function provides more useful information about its outcome than if it could only return a single value of a single type. For more information, see Functions with Multiple Return Values.

tuple은 특히 함수에서 값을 리턴할때 유용하다.

함수에서는 값을 하나만 리턴할수 있는데, 이때 tuple을 리턴하면 여러값을 리턴하는 효과를 낼수 있다는 뜻.

 

NOTE

Tuples are useful for simple groups of related values. They’re not suited to the creation of complex data structures. If your data structure is likely to be more complex, model it as a class or structure, rather than as a tuple. For more information, see Structures and Classes.

tuple은 간단히 관련된 값들을 묶는데 유용하다. 복작한 데이타 구조에는 어울리지 않는다.

복잡한 데이타 구조에는 class 나 구조체를 사용해라.

 

Optionals

You use optionals in situations where a value may be absent. An optional represents two possibilities: Either there is a value, and you can unwrap the optional to access that value, or there isn’t a value at all.

'값이없음'을 나타낼때 optional을 사용한다.

optional은 2가지 경우를 표현한다.

- 값이 있고, 값을 꺼내서 접근할수 있다.

- 값이없다.

 

NOTE

The concept of optionals doesn’t exist in C or Objective-C. The nearest thing in Objective-C is the ability to return nil from a method that would otherwise return an object, with nil meaning “the absence of a valid object.” However, this only works for objects—it doesn’t work for structures, basic C types, or enumeration values. For these types, Objective-C methods typically return a special value (such as NSNotFound) to indicate the absence of a value. This approach assumes that the method’s caller knows there’s a special value to test against and remembers to check for it. Swift’s optionals let you indicate the absence of a value for any type at all, without the need for special constants.

optional 개념은 c 나 objective-c에 없다.

objective-c에서 비슷한 기능은 nil 이고, nil은 '유효한객체가없다' 는 뜻이다.

그리고 오직 객체에만 적용되며, 구조체, 기본c타입, 열거형등에는 사용할수 없고

대신 특정한값(NSNotFound 같은)을 사용해야 하고, 불편하다.

swift에서 optional은 어떤 타입에서든 '값이없음' 을 나타낸다.

 

Here’s an example of how optionals can be used to cope with the absence of a value. Swift’s Int type has an initializer which tries to convert a String value into an Int value. However, not every string can be converted into an integer. The string "123" can be converted into the numeric value 123, but the string "hello, world" doesn’t have an obvious numeric value to convert to.

The example below uses the initializer to try to convert a String into an Int:

여기 값이없음 을 다루는 예제가 있다.

swift의 Int타입은 문자열을 숫자로 바꿔주는 초기화함수가 있다.

하지만 모든 문자열이 숫자로 변환가능한건 아니다.

문자열 "123"은 숫자 123으로 변환가능하지만, "hello, world"는 숫자로 변환할수 없다.

let possibleNumber = "123"
let convertedNumber = Int(possibleNumber)
// convertedNumber is inferred to be of type "Int?", or "optional Int"

 

Because the initializer might fail, it returns an optional Int, rather than an Int. An optional Int is written as Int?, not Int. The question mark indicates that the value it contains is optional, meaning that it might contain some Int value, or it might contain no value at all. (It can’t contain anything else, such as a Bool value or a String value. It’s either an Int, or it’s nothing at all.)

Int() 초기화함수가 실패할수 있으니까 optional Int 가 리턴된다.

optional Int 는 int? 로 작성한다.

물음표는 값이 optional 이라서 값이 있을수도 있고, 없을수도 있다는걸 나타낸다.

(그렇다고 Bool 이나 String 값을 가진다는건 아니다)

 

nil

You set an optional variable to a valueless state by assigning it the special value nil:

optional 변수에 '값이없음' 상태를 나타내려면 nil 을 넣어라.

var serverResponseCode: Int? = 404
// serverResponseCode contains an actual Int value of 404
serverResponseCode = nil
// serverResponseCode now contains no value

 

NOTE

You can’t use nil with non-optional constants and variables. If a constant or variable in your code needs to work with the absence of a value under certain conditions, always declare it as an optional value of the appropriate type.

If you define an optional variable without providing a default value, the variable is automatically set to nil for you:

non-optional 상수나 변수에는 nil을 넣을수 없다.

변수나 상수가 특정조건에서 '값이없음'을 나타내야 한다면, 항상 optional 로 선언해라.

optional 변수를 초기값없이 선언하면 자동으로 nil 로 셋팅된다.

var surveyAnswer: String?
// surveyAnswer is automatically set to nil

 

NOTE

Swift’s nil isn’t the same as nil in Objective-C. In Objective-C, nil is a pointer to a nonexistent object. In Swift, nil isn’t a pointer—it’s the absence of a value of a certain type. Optionals of anytype can be set to nil, not just object types.

swift의 nil은 objective-c의 nil과 다르다.

objective-c의 nil은 존재하지않는 객체에 대한 포인터다,

swift의 nil은 포인터가 아니고, '값이없음'을 나타내는 타입이고, 객체만이 아닌 어떤 타입이던지 nil로 설정할수 있다.

 

If Statements and Forced Unwrapping

You can use an if statement to find out whether an optional contains a value by comparing the optional against nil. You perform this comparison with the “equal to” operator (==) or the “not equal to” operator (!=).

If an optional has a value, it’s considered to be “not equal to” nil:

  1. if convertedNumber != nil {
  2. print("convertedNumber contains some integer value.")
  3. }
  4. // Prints "convertedNumber contains some integer value."

Once you’re sure that the optional does contain a value, you can access its underlying value by adding an exclamation mark (!) to the end of the optional’s name. The exclamation mark effectively says, “I know that this optional definitely has a value; please use it.” This is known as forced unwrapping of the optional’s value:

  1. if convertedNumber != nil {
  2. print("convertedNumber has an integer value of \(convertedNumber!).")
  3. }
  4. // Prints "convertedNumber has an integer value of 123."

For more about the if statement, see Control Flow.

NOTE

Trying to use ! to access a nonexistent optional value triggers a runtime error. Always make sure that an optional contains a non-nil value before using ! to force-unwrap its value.

Optional Binding

You use optional binding to find out whether an optional contains a value, and if so, to make that value available as a temporary constant or variable. Optional binding can be used with if and while statements to check for a value inside an optional, and to extract that value into a constant or variable, as part of a single action. if and while statements are described in more detail in Control Flow.

Write an optional binding for an if statement as follows:

  1. if let constantName = someOptional {
  2. statements
  3. }

You can rewrite the possibleNumber example from the Optionals section to use optional binding rather than forced unwrapping:

  1. if let actualNumber = Int(possibleNumber) {
  2. print("The string \"\(possibleNumber)\" has an integer value of \(actualNumber)")
  3. } else {
  4. print("The string \"\(possibleNumber)\" could not be converted to an integer")
  5. }
  6. // Prints "The string "123" has an integer value of 123"

This code can be read as:

“If the optional Int returned by Int(possibleNumber) contains a value, set a new constant called actualNumber to the value contained in the optional.”

If the conversion is successful, the actualNumber constant becomes available for use within the first branch of the if statement. It has already been initialized with the value contained within the optional, and so there’s no need to use the ! suffix to access its value. In this example, actualNumber is simply used to print the result of the conversion.

You can use both constants and variables with optional binding. If you wanted to manipulate the value of actualNumber within the first branch of the if statement, you could write if var actualNumber instead, and the value contained within the optional would be made available as a variable rather than a constant.

You can include as many optional bindings and Boolean conditions in a single if statement as you need to, separated by commas. If any of the values in the optional bindings are nil or any Boolean condition evaluates to false, the whole if statement’s condition is considered to be false. The following if statements are equivalent:

  1. if let firstNumber = Int("4"), let secondNumber = Int("42"), firstNumber < secondNumber && secondNumber < 100 {
  2. print("\(firstNumber) < \(secondNumber) < 100")
  3. }
  4. // Prints "4 < 42 < 100"
  5.  
  6. if let firstNumber = Int("4") {
  7. if let secondNumber = Int("42") {
  8. if firstNumber < secondNumber && secondNumber < 100 {
  9. print("\(firstNumber) < \(secondNumber) < 100")
  10. }
  11. }
  12. }
  13. // Prints "4 < 42 < 100"

NOTE

Constants and variables created with optional binding in an if statement are available only within the body of the if statement. In contrast, the constants and variables created with a guardstatement are available in the lines of code that follow the guard statement, as described in Early Exit.

 

Implicitly Unwrapped Optionals

As described above, optionals indicate that a constant or variable is allowed to have “no value”. Optionals can be checked with an if statement to see if a value exists, and can be conditionally unwrapped with optional binding to access the optional’s value if it does exist.

위에서 설명한 것처럼, optional은 '값이없음' 을 허용한다. if문에서 값이 있는지 확인하고 있다면 그 안에서 값을 꺼내 접근할수 있다.

 

Sometimes it’s clear from a program’s structure that an optional will always have a value, after that value is first set. In these cases, it’s useful to remove the need to check and unwrap the optional’s value every time it’s accessed, because it can be safely assumed to have a value all of the time.

These kinds of optionals are defined as implicitly unwrapped optionals. You write an implicitly unwrapped optional by placing an exclamation mark (String!) rather than a question mark (String?) after the type that you want to make optional.

optional이 처음에 값이 설정되고 그 뒤에 항상 값을 가지고 있는게 확실하다면, 매번 그 값에 접근할때마다 체크할 필요는 없다.

암시적 unwrapped optional.

항상값을 가지는 optional을 만들때는 물음표 (?) 대신에 느낌표 (!)를 사용하면 좋다.

 

Implicitly unwrapped optionals are useful when an optional’s value is confirmed to exist immediately after the optional is first defined and can definitely be assumed to exist at every point thereafter. The primary use of implicitly unwrapped optionals in Swift is during class initialization, as described in Unowned References and Implicitly Unwrapped Optional Properties.

An implicitly unwrapped optional is a normal optional behind the scenes, but can also be used like a non-optional value, without the need to unwrap the optional value each time it’s accessed. The following example shows the difference in behavior between an optional string and an implicitly unwrapped optional string when accessing their wrapped value as an explicit String:

암시적 unwrapped optional은 정의된 순간부터 항상 값을 가지고 있는 경우에 유용하다.

암시적 unwrapped optional의 주요 사용처는 클래스의 초기화에 있다.

암시적 unwrapped optional은 사실 보통의 optional 이지만, 그 값에 접근할때마다 unwrap할 필요가 없어서

non-optional 처럼 사용할수 있다.

다음 예제는 optional string 과 암시적 unwrapped optional string 에서 값을 꺼낼때 어떻게 다른지 보여준다.

  1. let possibleString: String? = "An optional string."
  2. let forcedString: String = possibleString! // requires an exclamation mark
  3.  
  4. let assumedString: String! = "An implicitly unwrapped optional string."
  5. let implicitString: String = assumedString // no need for an exclamation mark

You can think of an implicitly unwrapped optional as giving permission for the optional to be unwrapped automatically whenever it’s used. Rather than placing an exclamation mark after the optional’s name each time you use it, you place an exclamation mark after the optional’s type when you declare it.

암시적 unwrapped optional은 사용될때 자동으로 값이 꺼내진다고 생각해라.

사용할때마다 optional 이름 뒤에 !를 붙이는대신, 선언할때 optional 뒤에 !를 붙여라.

 

NOTE

If an implicitly unwrapped optional is nil and you try to access its wrapped value, you’ll trigger a runtime error. The result is exactly the same as if you place an exclamation mark after a normal optional that doesn’t contain a value.

You can still treat an implicitly unwrapped optional like a normal optional, to check if it contains a value:

암시적 unwrapped optional이 nil 인데 값에 접근하려 하면 런타임에러가 발생한다.

값을 가지지 않은 일반 optional 뒤에 느낌표를 붙였을때와 동일한 결과다.

값을 가지고 있다면 암시적 unwrapped optional을 일반 optional 과 동일하게 취급해도 된다.

  1. if assumedString != nil {
  2. print(assumedString!)
  3. }
  4. // Prints "An implicitly unwrapped optional string."

 

You can also use an implicitly unwrapped optional with optional binding, to check and unwrap its value in a single statement:

  1. if let definiteString = assumedString {
  2. print(definiteString)
  3. }
  4. // Prints "An implicitly unwrapped optional string."

 

NOTE

Don’t use an implicitly unwrapped optional when there’s a possibility of a variable becoming nil at a later point. Always use a normal optional type if you need to check for a nil value during the lifetime of a variable.

나중에 nil 값을 가질수 있는 변수는 암시적 unwrapped optional로 만들지 마라.

nil 값을 검사해야 하는 변수에는 일반 optional을 사용해라.

 

Error Handling

You use error handling to respond to error conditions your program may encounter during execution.

In contrast to optionals, which can use the presence or absence of a value to communicate success or failure of a function, error handling allows you to determine the underlying cause of failure, and, if necessary, propagate the error to another part of your program.

When a function encounters an error condition, it throws an error. That function’s caller can then catch the error and respond appropriately.

너의 프로그램이 실행되는 동안 발생하는 에러에 대응하기 위해서 error handling 을 사용할수 있다.

optional 값의 유무로 함수의 성공/실패를 나타낼수 있지만,

error handling은 실패의 근본원인을 판별하고, 필요하다면 프로그램의 다른 부분으로 오류를 전달할수도 있다.

func canThrowAnError() throws {
	// this function may or may not throw an error
}

 

A function indicates that it can throw an error by including the throws keyword in its declaration. When you call a function that can throw an error, you prepend the try keyword to the expression.

Swift automatically propagates errors out of their current scope until they’re handled by a catch clause.

위 함수는 throws 키워드를 사용해서 에러를 throw 할수 있음을 나타낸다.

에러를 throw 할수 있는 함수를 호출할때는, try 키워드를 앞에 써라

 

do {
	try canThrowAnError()
	// no error was thrown
} catch {
	// an error was thrown
}

 

A do statement creates a new containing scope, which allows errors to be propagated to one or more catch clauses.

Here’s an example of how error handling can be used to respond to different error conditions:

do문은 에러가 하나이상의 catch문으로 전달될수 있는 새로운 영역을 만든다.

오류처리를 사용해서 여러개의 에러 조건에 반응하는 예이다.

func makeASandwich() throws {
	// ...
}

do {
	try makeASandwich()
	eatASandwich()
} catch SandwichError.outOfCleanDishes {
	washDishes()
} catch SandwichError.missingIngredients(let ingredients) {
	buyGroceries(ingredients)
}

 

In this example, the makeASandwich() function will throw an error if no clean dishes are available or if any ingredients are missing. Because makeASandwich() can throw an error, the function call is wrapped in a try expression. By wrapping the function call in a do statement, any errors that are thrown will be propagated to the provided catch clauses.

If no error is thrown, the eatASandwich() function is called. If an error is thrown and it matches the SandwichError.outOfCleanDishes case, then the washDishes() function will be called. If an error is thrown and it matches the SandwichError.missingIngredientscase, then the buyGroceries(_:) function is called with the associated [String] value captured by the catch pattern.

Throwing, catching, and propagating errors is covered in greater detail in Error Handling.

이 예제에서 makeASandwich() 함수는 깨끗한 접시가 업거나 재료가 없으면 에러를 발생시킨다.

makeASandwich()가 에러를 발생시키기 때문에 try 를 붙여서 호출했다.

do문에 감싸서 함수를 호출했기때문에, 발생된 어떤 에러도 catch문으로 전달된다.

에러가 안나면 eatASandwich() 함수가 실행된다.

에러가 SandwichError.outOfCleanDishes 이면 washDishes() 함수가 호출된다.

에러가 SandwichError.missingIngredientscase 이면 buyGroceries(_:) 함수가 catch 패턴이 잡은 문자열과 함께 호출된다.

 

Assertions and Preconditions

Assertions and preconditions are checks that happen at runtime. You use them to make sure an essential condition is satisfied before executing any further code. If the Boolean condition in the assertion or precondition evaluates to true, code execution continues as usual. If the condition evaluates to false, the current state of the program is invalid; code execution ends, and your app is terminated.

assertion과 precondition은 런타임에 실행되는 검사다. 코드가 실행되기 전에 필수적인 조건이 만족되는지 확인하기 위해 사용된다.

assertion과 precondition의 조건이 참이면, 코드는 평소처럼 계속 진행된다.

조건이 거짓이면 프로그램의 상태는 유효하지 않고, 코드는 중단되고, 너의 앱은 종료된다.

 

You use assertions and preconditions to express the assumptions you make and the expectations you have while coding, so you can include them as part of your code. Assertions help you find mistakes and incorrect assumptions during development, and preconditions help you detect issues in production.

assertion과 precondition은 너가 코딩할때 기대했던거들과 가정했던것들을 표현하는데 사용되서, 너의 코드안에 넣을수 있다.

assertion은 개발할때 실수와 잘못된 가정을 찾도록 도와주고,

precondition은 실제품에서 문제를 발견하도록 도와준다.

(이석우 주석 : 프로그램이 올바르게 실행될수 있는 조건인 경우에만 실행되도록 보장해 준다는 뜻)

 

In addition to verifying your expectations at runtime, assertions and preconditions also become a useful form of documentation within the code. Unlike the error conditions discussed in Error Handling above, assertions and preconditions aren’t used for recoverable or expected errors. Because a failed assertion or precondition indicates an invalid program state, there’s no way to catch a failed assertion.

Using assertions and preconditions isn’t a substitute for designing your code in such a way that invalid conditions are unlikely to arise. However, using them to enforce valid data and state causes your app to terminate more predictably if an invalid state occurs, and helps make the problem easier to debug. Stopping execution as soon as an invalid state is detected also helps limit the damage caused by that invalid state.

The difference between assertions and preconditions is in when they’re checked: Assertions are checked only in debug builds, but preconditions are checked in both debug and production builds. In production builds, the condition inside an assertion isn’t evaluated. This means you can use as many assertions as you want during your development process, without impacting performance in production.

실행시 너의 기대를 검사하는거에 더해서, 코드안의 문서 형식에도 도움을 준다.

위에서 언급한 error handling과는 다르게, assertion과 precondition은 예상되는 에러나 복구할수 있는 에러에 사용되지 않는다.

왜냐면 assertion과 precondition가 실패하면 프로그램의 상태는 유효하지 않고, 그것을 잡아낼 방법은 없다.

assertion과 precondition는 잘못된 조건이 발생하지 않도록 코드를 설계하는데 사용하는게 아니다.

그렇다고 해도, 잘못된 데이타와 상태로 인해 너의 앱이 종료되는걸 더 잘 예상할수 있고, 디버깅 쉽게 해준다.

잘못된 상태일때 즉각 앱이 죽는게, 잘못된 상태에서 계속 실행되서 더 큰 문제를 만드는것보다 좋다. -> 대충 이런뜻.

assertion과 precondition의 차이는 검사 타이밍이다.

assertion은 debug 빌드시에만 검사되지만, precondition은 debug와 production 빌드 모두에서 검사된다.

production빌드에서 assertion 은 검사되지 않는다.

그래서 개발단계에서 assertion을 많이 사용해도 production에서는 성능에 영향이 없다.

 

 

Debugging with Assertions

You write an assertion by calling the assert(_:_:file:line:) function from the Swift standard library. You pass this function an expression that evaluates to true or false and a message to display if the result of the condition is false. For example:

swift 표준 라이브러리에 있는 asset() 함수를 호출해서 assertion을 만든다.

참/거짓을 판별할 조건과 거짓일때 보여줄 메세지를 이 함수에 넘긴다.

let age = -3
assert(age >= 0, "A person's age can't be less than zero.")
// This assertion fails because -3 is not >= 0.

 

In this example, code execution continues if age >= 0 evaluates to true, that is, if the value of age is nonnegative. If the value of age is negative, as in the code above, then age >= 0evaluates to false, and the assertion fails, terminating the application.

You can omit the assertion message—for example, when it would just repeat the condition as prose.

이 예제에서 if age >= 0 가 참이면 계속 실행되고, age가 음수면 aseerting이 실패하여, 앱이 죽는다.

메세지는 생략가능.

  1. assert(age >= 0)

If the code already checks the condition, you use the assertionFailure(_:file:line:)function to indicate that an assertion has failed. For example:

이미 조건을 검사했다면 assertionFailur() 함수를 사용해서 assertion을 실패했음을 표시할수 있다.

if age > 10 {
	print("You can ride the roller-coaster or the ferris wheel.")
} else if age >= 0 {
	print("You can ride the ferris wheel.")
} else {
	assertionFailure("A person's age can't be less than zero.")
}

 

Enforcing Preconditions

Use a precondition whenever a condition has the potential to be false, but must definitely be true for your code to continue execution. For example, use a precondition to check that a subscript is not out of bounds, or to check that a function has been passed a valid value.

You write a precondition by calling the precondition(_:_:file:line:) function. You pass this function an expression that evaluates to true or false and a message to display if the result of the condition is false. For example:

조건이 거짓일 가능성이 있을때마다 precondition을 사용해라. 너의 코드가 계속 실행되려면 참이어야 한다.

예를들어 첨자가 범위를 넘는지 검사할때 또는 함수가 올바른 값을 받았는지 검사할때 precondition을 사용해라.

// In the implementation of a subscript...
precondition(index > 0, "Index must be greater than zero.")

 

You can also call the preconditionFailure(_:file:line:) function to indicate that a failure has occurred—for example, if the default case of a switch was taken, but all valid input data should have been handled by one of the switch’s other cases.

또한 preconditionFailure()함수를 사용해서 실패가 발생했음을 나타낼수 있다.

 

NOTE

If you compile in unchecked mode (-Ounchecked), preconditions aren’t checked. The compiler assumes that preconditions are always true, and it optimizes your code accordingly. However, the fatalError(_:file:line:) function always halts execution, regardless of optimization settings.

You can use the fatalError(_:file:line:) function during prototyping and early development to create stubs for functionality that hasn’t been implemented yet, by writing fatalError("Unimplemented") as the stub implementation. Because fatal errors are never optimized out, unlike assertions or preconditions, you can be sure that execution always halts if it encounters a stub implementation.

반응형
Posted by 돌비
,